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Problem 3.35

Consider the wave function

Ψ(x, 0) =


1√
2nλ

ei2πx/λ, −nλ < x < nλ,

0, otherwise,

where n is some positive integer. This function is purely sinusoidal (with wavelength λ) on the
interval −nλ < x < nλ, but it still carries a range of momenta, because the oscillations do not
continue out to infinity. Find the momentum space wave function Φ(p, 0). Sketch the graphs of
|Ψ(x, 0)|2 and |Φ(p, 0)|2, and determine their widths, wx and wp (the distance between zeros on
either side of the main peak). Note what happens to each width as n → ∞. Using wx and wp as
estimates of ∆x and ∆p, check that the uncertainty principle is satisfied. Warning: If you try
calculating σp, you’re in for a rude surprise. Can you diagnose the problem?

Solution

Calculate |Ψ(x, 0)|2, the probability distribution for the particle’s position at t = 0.

|Ψ(x, 0)|2 = Ψ∗(x, 0)Ψ(x, 0) =


(

1√
2nλ

e−i2πx/λ
)(

1√
2nλ

ei2πx/λ
)

if − nλ < x < nλ

0 otherwise

|Ψ(x, 0)|2 =


1

2nλ if − nλ < x < nλ

0 otherwise

Check that it’s normalized.� ∞

−∞
|Ψ(x, 0)|2 dx =

� nλ

−nλ

1

2nλ
dx =

1

2nλ

� nλ

−nλ
dx =

1

2nλ
(2nλ) = 1

Now obtain Φ(p, 0), the momentum-space wave function at t = 0, by taking the Fourier transform
of Ψ(x, 0).

Φ(p, 0) = F{Ψ(x, 0)}

=
1√
2πℏ

� ∞

−∞
e−ipx/ℏΨ(x, 0) dx

=
1√
2πℏ

� nλ

−nλ
e−ipx/ℏ 1√

2nλ
ei2πx/λ dx

=
1

2
√
nπℏλ

� nλ

−nλ
exp

[
i

(
2π

λ
− p

ℏ

)
x

]
dx

=
1

2
√
nπℏλ

� nλ

−nλ
exp

[
i

(
2πℏ− pλ

ℏλ

)
x

]
dx

Note that h can’t be substituted for pλ (Equation 1.39 on page 19) because, as Mr. Griffiths said,
this sinusoidal wave in Ψ(x, 0) does not extend indefinitely.
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Evaluate the integral and simplify the result.

Φ(p, 0) =
1

2
√
nπℏλ

· ℏλ
i(2πℏ− pλ)

exp

[
i

(
2πℏ− pλ

ℏλ

)
x

]∣∣∣∣nλ
−nλ

=
1

2i

√
ℏλ
nπ

· 1

2πℏ− pλ

{
exp

[
i

(
2πℏ− pλ

ℏλ

)
nλ

]
− exp

[
−i

(
2πℏ− pλ

ℏλ

)
nλ

]}

=
1

2i

√
ℏλ
nπ

· 1

2πℏ− pλ

(
e2iπne−ipλn/ℏ − e−2iπneipλn/ℏ

)

=
1

2i

√
ℏλ
nπ

· 1

pλ− 2πℏ

(
eipλn/ℏ − e−ipλn/ℏ

)
=

1

2i

√
ℏλ
nπ

· 1

pλ− 2πℏ

(
2i sin

pλn

ℏ

)

=

√
ℏλ
nπ

·
sin pλn

ℏ
pλ− 2πℏ

Now determine |Φ(p, 0)|2, the probability distribution for the particle’s momentum at t = 0.

|Φ(p, 0)|2 = Φ∗(p, 0)Φ(p, 0) =
ℏλ
nπ

·
sin2 pλn

ℏ
(pλ− 2πℏ)2

=
λ

nπℏ
·

sin2 pλn
ℏ(

pλ
ℏ − 2π

)2

Check that it’s normalized.

� ∞

−∞
|Φ(p, 0)|2 dp =

ℏλ
nπ

� ∞

−∞

sin2 pλn
ℏ

(pλ− 2πℏ)2
dp

Make the following substitution.

pλ = 2πℏu → pλn

ℏ
= 2πnu

dp =
2πℏ
λ

du

Consequently,

� ∞

−∞
|Φ(p, 0)|2 dp =

ℏλ
nπ

� ∞

−∞

sin2 2πnu

(2πℏu− 2πℏ)2

(
2πℏ
λ

du

)

=
ℏλ
nπ

· 1

4π2ℏ2
· 2πℏ

λ

� ∞

−∞

sin2 2πnu

(u− 1)2
du

=
1

2nπ2

� ∞

−∞

sin2 2πnu

(u− 1)2
du.
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Substitute v = u− 1 (du = dv) and then use the fact that sine is 2π-periodic.

� ∞

−∞
|Φ(p, 0)|2 dp =

1

2nπ2

� ∞

−∞

sin2 2πn(v + 1)

v2
dv

=
1

2nπ2

� ∞

−∞

sin2(2πnv + 2πn)

v2
dv

=
1

2nπ2

� ∞

−∞

sin2 2πnv

v2
dv

=
1

2nπ2
(2nπ2)

= 1

Below is a side-by-side comparison of the probability distributions at t = 0 for n = 1.

Below is a side-by-side comparison of the probability distributions at t = 0 for n = 50.

Notice that increasing n increases the uncertainty in the particle’s position and decreases the
uncertainty in the particle’s momentum.
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Here we use the width (from zero to zero) of the highest peak in the probability distribution to
quantify the uncertainty. For the position, the highest peak occurs for

−n ≤ x

λ
≤ n

−nλ ≤ x ≤ nλ.

As a result, the width for position is

wx = nλ− (−nλ) = 2nλ.

For the momentum, observe that the absolute maximum occurs when pλ/ℏ = 2π. The numerator
here is sin2 2πn. The closest zeros on either side of this absolute maximum occur at the next and
previous multiples of π. The highest peak, then, occurs for

(2n− 1)π ≤ npλ

ℏ
≤ (2n+ 1)π

(2n− 1)πℏ ≤ npλ ≤ (2n+ 1)πℏ

(2n− 1)πℏ
nλ

≤ p ≤ (2n+ 1)πℏ
nλ

.

Consequently, the width for momentum is

wp =
(2n+ 1)πℏ

nλ
− (2n− 1)πℏ

nλ
=

2πℏ
nλ

.

As expected,
lim
n→∞

wx = ∞ and lim
n→∞

wp = 0.

Now take the product of wx and wp and check that Heisenberg’s uncertainty principle is satisfied
at t = 0.

wxwp = (2nλ)

(
2πℏ
nλ

)
= 4πℏ ≥ ℏ

2
.

Calculating σp as usual,

σp =
√
⟨p2⟩ − ⟨p⟩2,

isn’t useful here because ⟨p2⟩ is infinite regardless of which wave function is used to calculate it.
Using the momentum-space wave function Φ(p, 0) leads to a divergent integral.

⟨p2⟩ = ⟨Φ | p̂2 |Φ⟩ =
� ∞

−∞
Φ∗(p, 0)p2Φ(p, 0) dp =

� ∞

−∞
p2|Φ(p, 0)|2 dp =

ℏλ
nπ

� ∞

−∞

p2 sin2 pλn
ℏ

(pλ− 2πℏ)2
dp = ∞

Using the position-space wave function Ψ(x, 0) instead isn’t any better because it’s more
complicated than it seems, and it has to be differentiated twice.

Ψ(x, 0) =
1√
2nλ

ei2πx/λ
[
θ(x+ nλ)− θ(x− nλ)

]
, −∞ < x < ∞

The problem comes from the fact that there are Heaviside functions, which in turn are due to the
discontinuities at x = ±nλ.
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